Oct 10, 2012

Kant’s Theory of Knowledge Synthesizes the Foundation of Mathematics

By Marsigit

Bolzano B. comments that Kant’s theory of knowledge seem to promise us with his discovering of a definite and characteristic difference between two main classes of all human a priori knowledge i.e. philosophy and mathematics.

According to Kant mathematical knowledge is capable of adequately presenting all its concepts in a pure intuition, i.e. constructing.

It is also able to demonstrate its theorems; while, on the other hand, philosophical knowledge, devoid of all intuition, must be content with purely discursive concepts.

Consequently the essence of mathematics may be expressed most appropriately by the definition that it is a science of the construction of concepts.

Bolzano suggests that several mathematicians who adhere to the critical philosophy have actually adopted this definition and deserved much credit to Kant’s theory of knowledge for the foundation of pure mathematics.

Kant’s theory of knowledge, as it deserved in his transcendental philosophy, had a distinct work i.e. the “Critique of Pure Reason (1781)”, in which he opens a new epoch in metaphysical thought where far in the history of philosophy the human mind had not been fairly considered.

Thinkers had concerned themselves with the objects of knowledge, not with the mind that knows, while Kant tries to transfer contemplation from the objects that engaged the mind to the mind itself, and thus start philosophy on a new career.

Shabel L. (1998) perceives that epistemologicaly, Kant primarily regards to determine whether the method for obtaining apodictic certainty, that one calls mathematics in the latter science or pure reason in its mathematical use, is identical with that by means of which one seeks the same certainty in philosophy, and that would have to be called as dogmatic.

Prior and after Kant , there are questions left for some writers to get their position about the foundation of mathematics e.g.

Whether or not we have the mathematical ideas that are true of necessity and absolutely?

Are there mathematical ideas that can fairly be pronounced independent in their origin of experience, and out of the reach of experience by their nature?

One party contends that all mathematical knowledge was derived from experience viz. there was nothing in the intellect that had not previously been in the senses.

The opposite party maintains that a portion of mathematical knowledge came from the mind itself viz. the intellect contained powers of its own, and impressed its forms upon the phenomena of sense.

The extreme doctrine of the two schools was represented, on the one side by the materialists, on the other by the mystics.

Between these two extremes Kant might be perceived to offer various degrees of compromise or raging its foundations spuriously.

The ultimately discussion sums up that, in the sphere of Kant’s ‘dogmatic’ notions, his theory of knowledge, in turn, can be said to lead to undogmatization and demythologization of mathematical foundations as well as rages the institutionalization of the research of mathematical foundations in which it encourages the mutual interactions among them.

Smith, N. K. in “A Commentary to Kant’s Critique of Pure Reason”, maintains that some further analytic explanations supporting the claims come from Kant’s claims that there are three possible standpoints in philosophy i.e. the dogmatic, the sceptical, and the critical.

All preceding thinkers come under the first two heads. Kant insists that a dogmatist is one who assumes that human reason can comprehend ultimate reality, and who proceeds upon this assumption; it expresses itself through three factors viz. rationalism, realism, and transcendence.

According to Smith, N. K. , for Kant, Descartes and Leibniz are typical dogmatists.

On the other hand, rationalists held that it is possible to determine from pure a priori principles the ultimate nature of the material universe.

They are realists in that they assert that by human thought, the complete nature of objective reality, can be determined.

However, they also adopt the attitude of transcendence.

Through pure thought , rationalists go out beyond the sensible and determine the supersensuous. Meanwhile , skepticism may similarly be defined through the three terms, empiricism, subjectivism, immanence.

Further, Smith, N. K clarifies that a skeptic can never be a rationalist.

The skeptic must reduce know¬ledge to sense-experience; for this reason also his knowledge is infected by subjective conditions.

Through sensation we cannot hope to determine the nature of the objectively real.

This attitude is also that of immanence and knowledge is limited to the sphere of sense-experience.

Smith, N. K synthesizes that criticism has similarly its three constitutive factors, rationalism, subjectivism, immanence.

Accordingly, it agrees with dogmatism in maintaining that only through a priori principles can true knowledge be obtained.

Such knowledge is, however, subjective in its origin, and for that reason it is also only of immanent application.

Knowledge is possible only in the sphere of sense-experience.

Dogmatist claims that knowledge arises independently of experience and extends beyond it.

Empiricism holds that knowledge arises out of sense-experience and is valid only within it; while, criticism teaches that knowledge arises independently of particular experience but is valid only for experience.

It can be learned from Kant that the skeptic is the taskmaster who constrains the dogmatic reasoner to develop a sound critique of the mathematical understanding and reason.

The skeptical procedure cannot of itself yield any satisfying answer to the questions of mathematical reason, but none the less it prepares the way by awakening its circumspection, and by indicating the radical measures which are adequate to secure it in its legitimate possessions.

Kant develops the method as, the first step, in matters of pure reason, marking its infancy, is dogmatic.

The second step is skeptical to indicate that experience has rendered our judgment wiser and more circumspect.

The third step, is now necessary as it can be taken only by fully matured judgment.

It is not the censorship but the critique of reason whereby not its present bounds but its determinate and necessary limits; not its ignorance on this or that point but is regard to all possible questions of a certain kind.

Mathematical reasons are demonstrated from principles, and not merely arrived at by way of mathematical conjecture.

Skepticism is thus a resting-place for mathematical reason, where it can reflect upon its dogmatic wanderings and make survey of the region in which it finds itself, so that for the future it may be able to choose its part with more certainty.

The role of Kant’s theory of knowledge, in the sense of demythologization of mathematical foundations, refers to history of the mathematical myth from that of Euclid’s to that of contemporary philosophy of mathematics.

The myth of Euclid: "Euclid's Elements contains truths about the universe which are clear and indubitable", however, today advanced student of geometry to learn Euclid's proofs are incomplete and unintelligible. Nevertheless, Euclid's Elements is still upheld as a model of rigorous proof.

The myths of Russell, Brouwer, and Bourbaki - of logicism, intuitionism, and formalism-are treated in The Mathematical Experience.

Contemporary mathematical foundations consist of general myths that:
1. Unity i.e. there is only one mathematics, indivisible now and forever, and it is a single inseparable whole;
2. Universality i.e. the mathematics we know is the only mathematics there can be;
3. Certainty i.e. mathematics has a method, "rigorous proof;" which yields absolutly certain conclusions, given truth of premises;
4. Objectity i.e. mathematical truth is the same for everyone and it doesn't matter who discovers it as well as true whether or not anybody discovers it.

Kant’s theory of knowledge implies to the critical examinations of those myths.

In fact, being a myth doesn't entail its truth or falsity.

Myths validate and support institutions in which their truth may not be determinable.

Those latent mathematical myths are almost universally accepted, but they are not sef-evident or self-¬proving.

From a different perspective, it is possible to question, doubt, or reject them and some people do reject them.

Hersh, R. in “What is Mathematics, Really?” indicates that if mathematics were presented in the style in which it is created, few would believe its universality, unity, certainty, or objectivity.

These myths support the institution of mathematics.

While the purists sometimes even declare applied mathe¬matics is not mathematics.

The clarity and strict necessity of mathematical truth had long provided the rationalists - above all Descartes, Spinoza and Leibniz - with the assurance that, in the world of modern doubt, the human mind had at least one solid basis for attaining certain knowledge.

Kant himself had long been convinced that mathematics could accurately describe the empirical world because mathematical principles neces¬sarily involve a context of space and time.

According to Kant, space and time lay at the basis of all sensory experience i.e. the condition and structure any empirical observation.

For Kant, intuitions are supposed to be eternal and universal features of mind which constitutes all human thinking.

While, for rationalists, mathematics was the main example to confirm their view of the world.

From the three historic schools, the mainstream philosophy of mathematics records only intuitionism pays attention to the construction of mathematics.

Formalists, Logicists, and Platonists sit at a table in the dining room, discussing their rag out as a self-created, autonomous entity.

Smith, N. K. concerns with Kant’s conclusion that there is no dwelling-place for permanent settlement obtained only through perfect certainly in our mathematical knowledge, alike of its objects themselves and of the limits which all our knowledge of object is enclosed.

In other word , Kant’s theory of knowledge implies to un-dogmatization and de-mythologization of mathematical foundations as well as to rage the institutionalization of the research of mathematical foundations.

In term of these perspectives, Kant considers himself as contributing to the further advance of the eighteenth century Enlightenment and in the future prospect of mathematics philosophy.

1Bolzano, B., 1810, “Contributions to a Better-Grounded Presentation of Mathematics” in Ewald, W., 1996, “From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume I”, Oxford: Clarendon Press, p. 175
2 Ibid. p. 175
3 Ibid. p.175
4Immanuel Kant, 1724–1804”, Retrieved 2004
6 Smith, N. K., 2003, “A Commentary to Kant’s Critique of Pure Reason”, New York: Palgrave Macmillan, p. 13
7 Ibid. p. 13
8 Ibid. p. 13
9 Ibid. p. 13
10 Ibid. p.14
11Ibid. p. 14
12Ibid. p. 14
13Ibid. p. 14
14Ibid. p. 14
15Ibid. p.14
16Ibid. p. 21
17Ibid. p. 21
18Ibid. p.21
19Ibid. p. 14
20Hersh, R., 1997, “What is Mathematics, Really?”, London: Jonathan Cape, p. 37
21 Ibid. p. 38
22Smith, N. K., 2003, “A Commentary to Kant’s Critique of Pure Reason”, New York: Palgrave Macmillan, p. 21


  1. Nama : Habibullah
    NIM : 17709251030
    Kelas : PM B (S2)

    Assalamualaikum wr.wb

    Kant menyatakan bahwa pengetahuan manusia memiliki dua sumber utama dalam bentuk penerimaan kesan inderawi (sensibility) dan pemahaman (understanding) yang membuat keputusan-keputusan tentang kesan inderawi yang diperoleh melalui kegiatan penerimaan. Kemudian Kant juga menganggap bahwa dalam pikiran manusia terlibat dalam menentukan konsepsi. Apa yang kita lihat dianggap sebagai fenomena dalam ruang dan waktu yang disebut dengan intuisi. Oleh karena itu, Kant berargumen bahwa obyek mengarahkan diri ke subyek.

  2. Efi Septianingsih
    Prodi Penelitian dan Evaluasi Pendidikan
    Kelas B

    Seperti yang Prof ajarkan minggu kemarin tentang pemikira. Immanuel Kant pada tahum itu ia sudah memiliki pemikiran yang kompleks
    Dan bagaimana ia melihat apaan yang tidak diketahui oleh orang lain tentang pikiran
    Yang menjadikan seseorang memiliki intuisi yang lebih, memikirkan sesuatu sekarang kontraditif dll
    Mungkin hal tersebut yang menjadikan ia mampu merasa dan melihat apa yang tidak nampak oleh orang lain (metafisik)

  3. Tri Wulaningrum
    PEP S2 B

    Menurut Immanuel Kant pemahaman maupun konstruksi matematika diperoleh dengan cara menemukan intuisi murni pada akal atau pikiran kita terlebih dulu. Matematika yang bersifat sintetik a priori dapat dikonstruksi melalui beberapa tahap intuisi yaitu intuisi penginderaan, intuisi akal, dan intuisi nilai. Kombinasi antara intusi dan sintetik a priori menjadikan matematika sebagai ilmu pengetahuan yang bersifat abstrak, yang dapat dipelajari tanpa si pembelajar harus mengalami langsung objek kajian yang akan ia pelajari.

  4. I Nyoman Indhi Wiradika
    PEP B

    Teori Kant tentang pengertahuan membawa kita pada temuan atas perbedaan yang pasti dan khas yaitu filsafat dan matematika. Menurut Kant, matematika mampu menyajikan semua konsepnya dalam intuisi murni, yaitu konstruk atas teorema-teorema. Sementara, di sisi lain pengetahuan filosofis tanpa semua intuisi harus puas dengan konsep diskursif murni. Selanjutnya Kant mengatakan bahwa intuisi seharusnya merupakan ciri-ciri pikiran abadi dan universal yang merupakan semua pemikiran manusia. Sementara, bagi kaum rasionalis, matematika adalah contoh utama untuk mengkonfirmasi pandangan mereka tentang dunia.

  5. Yusrina Wardani
    PPs PMAT C 2017
    Pengetahuan a priori merupakan jenis pengetahuan yang datang lebih dulu sebelum dialami, seperti misalnya pengetahuan akan bahaya, sedangkan a posteriori sebaliknya yaitu dialami dulu baru mengerti. Kalau salah satunya saja yang dipakai misalnya hanya empirisme saja atau rasionalisme saja maka pengetahuan yang diperoleh tidaklah sempurna bahkan bisa berlawanan. Filsafat Kant menyebutkan bahwa pengetahuan merupakan gabungan (sintesis) antara keduanya.

  6. Firman Indra Pamungkas
    S2 Pendidikan Matematika 2017 Kelas C

    Assalamualaikum Warohmatullah Wabarokatuh
    Berdasarkan artikel di atas, saya mengetahui bahwa teori pengetahuan Immanuel Kant memungkinkan kita untuk menemukan perbedaan karakteristik antara dua pengetahuan a priori, sebagai contoh matematika dan filsafat. Pengetahuan matematika mampu untuk mempresentasikan konsepnya dalam intuisi murni. Matematika juga dapat mendemonstrasikan teoremanya, sedangkan pengetahuan fiosofi, tanpa intuisi, harus puas dengan konsep diskursif murni sehingga esensi matematika paling tepat dapat definisikan sebagai ilmu membangun konsep. Saat ini, pondasi matematika kontemporer memiliki beberapa mitos, yaitu unity, universality, certainty, dan objectivity. Teori pengetahuan Kant berimplikasi pada pemeriksaan kritis mengenai mitos-mitos tersebut.

  7. Nama: Dian Andarwati
    NIM: 17709251063
    Kelas: Pendidikan Matematika (S2) Kelas C

    Assalamu’alaikum. Menurut Kant, pengetahuan matematika mampu menyajikan secara memadai semua konsepnya dalam intuisi murni. Di sisi lain, pengetahuan filosofis, tanpa semua intuisi, harus puas dengan konsep diskursif murni. Konsekuensinya esensi matematika dapat dinyatakan dengan definisi bahwa ilmu konstruksi konsep. Teori pengetahuan Kant, sebagaimana layaknya filsafat transendentalnya, memiliki sebuah karya yang berbeda dimana ia membuka sebuah zaman baru dalam pemikiran metafisik yang sejauh ini berada dalam sejarah filsafat, pikiran manusia belum dipertimbangkan secara wajar.

  8. Nama: Hendrawansyah
    NIM: 17701251030
    S2 PEP 2017 Kelas B

    Assalamualaikum wr wb

    Ide tentang matematika tidak dapat berdiri secara independen.Berawal dari ketelitiannya terkait perbedaan pendapat dari para filsuf yang ada dalam memandang , Khant berusaha merangkul untuk menemukan jalan keluarnya. Khant telah banyak berkontribusi dalam mandamaikan dua paham yang bersebrangan yaitu antara idealisme dan empirisme. Di lain sisi dibahas mengenai skeptisme.Sketipsme akan dapat berubah menjadi barokah dan bencana. Akan menjadi barokah jikalau terus melakukan pencarian dan tidak berhenti. Dan akan menjadi bencana jika berhenti di tengah jalan dan tidak dilakukan secara terus menerus.

  9. Latifah Fitriasari
    PM C

    Teori Pengetahuan dari Immanuel Kant, sebagai landasan epistemologis dari pengetahuan , dipengaruhi paling tidak oleh pengaruh dua aliran epistemologi yang masing-masing berakar pada pondasi empiris dan pondasi rasionalis. Peranan teori pengetahuan dari Immanuel Kant dalam meletakkan dasar-dasar episteomologis dari matematika. Metode sintetik dilawankan dengan metode analitik dan konsep “a priori” dilawankan dengan “a posteriori”. Waktu dan ruang merupakan dasar untuk aljabar dan geometri.Dasar dari ilmu pengetahuan alam adalah kategori. Mereka adalah independen dari pengalaman

  10. This comment has been removed by the author.

  11. Uswatun Hasanah
    S2 PEP B

    Menurut saya artikel di atas menggambarkan adanya kebebasan berpikir dan berbagai pandangan terkait dengan matematika murni secara filsafat. Saya menyadari bahwa setiap ilmu datang dari pikiran yang murni. Dalam artian bahwa pemikiran dapat sebebas-bebasnya membentuk suatu pemahaman akan suatu obyek dan menggambarkan hal-hal yang ada di sekitar obyek tersebut. Namun, perlu disadari bahwa semua yang dipikirkan cenderung berada pada ruang kemungkinannya saja. Di sini letak keterbatasan dalam menjelaskan suatu obyek dan keadaan yang menyertainya.

  12. Isoka Amanah Kurnia
    PPs Pendidikan Matematika 2017 Kelas C
    Immanuel Kant embodies a knowledge of student intuition. Contemporary mathematics should be established with a solid foundation in mathematics that should start from the first time intuition is given. Mathematics should be the main goal of the philosophy of mathematics The idea of learning mathematics by kant, is very useful in school math learning. Through the complex thinking to mix the two explicit theories (rasionalisme and empirisme) Kant giving the theory of synthetic apriori which makes us respecting both theories without reducing each of their main point.

  13. Nama : Habibullah
    NIM : 17709251030
    Kelas : PM B (S2)

    Assalamualaikum wr.wb

    Banyak sekali pemikiran-pemikiran Immanuel Kant yang terkadang sangat sulit untuk dipahami jika menyangkut pengetahuan tentang matematika. Karena matematika merupakan ilmu eksakta yang sagat komplek dan bersifat sustainable yang berati memiliki sistem berkelanjutan dalam proses pembelajarannya. Maka dari itu tugas guru matematika adalah jangan pernah berhenti untuk selalu melakukan inovasi di dalam pembelajaran matematika.