Feb 12, 2013

Elegi Pemberontakan Pendidikan Matematika 17: Apakah Matematika Kontradiktif? (Bagian Ketujuh)




Oleh Marsigit

Dari uraian saya terdahulu jelaslah bahwa sasaran uji kontradiksi saya adalah pada RELASI atau OPERASI penghasil Komponen Dasar Pembentuk Konsep atau Sistem Matematika.

Kasusnya bisa diambil pada relasi atau operasi yang sangat sederhana dantidak perlu mengambil yang terlalu rumit. Misal pada kasus relasi yang dihubungkan dengan tanda "=", ">", "<". Dan operasi penjumlahan, pengurangan, perkalian atau pembagian pada bilangan rasional. Apapun relasinya maka semuanya tertampung dalam relasi "adalah". Apapun operasinya maka semuanya juga akan ditampung ke dalam relasi "adalah". Demikianlah seperti yang telah saya sebutkan bahwa relasi "adalah" adalah pembentuk konsep atau definisi matematika dengan cara menghubungkan Subyek dan Predikatnya. Ambil contoh relasi X=1, X>7 atau Y<9.

Ambil contoh operasi 7 x 3 = 21, 8+4 = 12, 8-6 = 2, 3+4 = 7, dst. Marilah kita menguji kasusnya misal pada 3+4=7, dibaca "tiga ditambah empat sama dengan tujuh" atau "tiga ditambah empat adalah tujuh".

Kemudian ambil Bentuk Ruang sederhana misalnya Basis Bilangan. Maka 3+4=7 hanya benar untuk bilangan-bilangan berbasis 8 ke atas; sedangkan untuk bilangan berbasis 7 maka 3+4=10; artinya akan bersifat kontradiktif jika kita sebut bahwa 3+4=7. Padahal Bilangan Basis itu hanyalah satu dari Unlimited Ruang yang dapat dikenakan pada kasus ini.

Artinya pada kasus 3+4=7, jika tidak ada keterangan terbebas dari ruang dan waktu maka jelaslah dia bersifat kontradiksi atau tidak berlaku hubungan 3+4 adalah 7. Satu-satunya prinsip yang terbebas dari sifat konradiktif adalah Prinsip Identitas.

Tetapi Prinsip Identitas tidak mampu memberikan informasi apapun kepada kita; jadi PrinsipIdentitas tidak memberikan ilmu atau tidak bisa digunakan sebagai Basis Pembentuk Ilmu.

Relevansi dari hal ini adalah pada pembentukan konsep atau definisi matematika. Seperti kita ketahui bahwa terdapat bermacam-macam definisi matematika; tetapi secara filsafat maka definisi matematika cukup bisa dibedakan kedalam dua macam definisi saja, yaitu Definisi yang sesuai dengan Prinsip Identitas dan dengan sendirinya selain itu adalah definisi yang sesuai dengan Prinsip Kontradiksi.

Jikalau matematika dibangun dengan Prinsip Identitas saja maka jelaslah dia Bukan Ilmu. Maka secara filsafat, tidaklah bisa dihindari bahwa agar matematika merupakan Ilmu maka Definisi pembentuk Sistemnya HARUSLAH BERSIFAT KONTRADIKTIF.

Jikalau Logicist bertekad mempertahankan Konsistensinya, maka hal demikian akan sempurna dijamin dengan Prinsip Identitas; tetapi berakibat terancam bahwa Logicist tidak mampu memberikan informasi apapun kecuali Kekonsistennya.

Padahal kekerabatan Logicist-Formalism-Foundationlism tidak bisa dipisahkan, dan itu adalah cermin diri kita yaitu Hampir Sebagian Matematikawan kita.

Artinya matematikawan kita dihadapkan pada situasi sulit antara menjadi Logicist yang totally Konsisten dengan jaminan Prinsip Identitas, tetapi terancam menelan pil pahit bukan sebagai Ilmuwan; atau terpaksa menjadi matematikawan yang menelan Prinsip Kontradiksi tetapi terhibur menjadi seorang Ilmuwan yang mantap.

Immanuel Kant menyimpulkan bahwa sebenar-benar ilmu itu adalah Kontradiktif.

No comments:

Post a Comment