Nov 1, 2012

Kant on the Basis Validity of the Concept of Geometrical




By Marsigit
Yogyakarta State University

In his Critic of Pure Reason (1787) Kant elaborates that geometry is based upon the pure intuition of space; and, arithmetic accomplishes its concept of number by the successive addition of units in time; and pure mechanics especially cannot attain its concepts of motion without employing the representation of time. Kant stresses that both representations, however, are only intuitions; for if we omit from the empirical intuitions of bodies and their alterations (motion) everything empirical, or belonging to sensation, space and time still remain.


Therefore, Kant concludes that pure mathematics is synthetical cognition a priori. Pure mathematics is only possible by referring to no other objects than those of the senses, in which, at the basis of their empirical intuition lies a pure intuition of space and time which is a priori. Kant illustrates, that in ordinary and necessary procedure of geometers, all proofs of the complete congruence of two given figures come ultimately to to coincide; which is evidently nothing else than a synthetical proposition resting upon immediate intuition.

This intuition must be pure or given a priori, otherwise the proposition could not rank as apodictically certain, but would have empirical certainty only. Kant further claims that everywhere space has three dimensions. This claim is based on the proposition that not more than three lines can intersect at right angles in one point.
Kant argues that drawing the line to infinity and representing the series of changes e.g. spaces travers by motion can only attach to intuition, then he concludes that the basis of mathematics actually are pure intuitions; while the transcendental deduction of the notions of space and of time explains the possibility of pure mathematics.

Kant defines that geometry is a science which determines the properties of space synthetically, and yet a priori. What, then, must be our representation of space, in order that such a cognition of it may be possible? Kant explains that it must be originally intuition, for from a mere conception, no propositions can be deduced which go out beyond the conception, and yet this happens in geometry. But this intuition must be found in the mind a priori, that is, before any perception of objects, consequently must be pure, not empirical, intuition.

According to Kant , geometrical principles are always apodeictic, that is, united with the consciousness of their necessity; however, propositions as "space has only three dimensions", cannot be empirical judgments nor conclusions from them. Kant claims that it is only by means of our explanation that the possibility of geometry, as a synthetical science a priori, becomes comprehensible.

As the propositions of geometry are cognized synthetically a priori, and with apodeictic certainty. According to Kant , all principles of geometry are no less analytical; and it based upon the pure intuition of space. However, the space of the geometer would be considered a mere fiction, and it would not be credited with objective validity, because we cannot see how things must of necessity agree with an image of them, which we make spontaneously and previous to our acquaintance with them.

But if the image is the essential property of our sensibility and if this sensibility represents not things in themselves, we shall easily comprehend that all external objects of our world of sense must necessarily coincide in the most rigorous way with the propositions of geometry. The space of the geometer is exactly the form of sensuous intuition which we find a priori and contains the ground of the possibility of all external appearances.

In his own remarks on geometry, Kant regularly cites Euclid’s angle-sum theorem as a paradigm example of a synthetic a priori judgment derived via the constructive procedure that he takes to be unique to mathematical reasoning. Kant describes the sort of procedure that leads the geometer to a priori cognition of the necessary and universal truth of the angle-sum theorem as:

The object of the theorem—the constructed triangle—is in this case “determined in accordance with the conditions of…pure intuition.” The triangle is then “assessed in concreto” in pure intuition and the resulting cognition is pure and a priori, thus rational and properly mathematical. To illustrate, I turn to Euclid’s demonstration of the angle-sum theorem, a paradigm case of what Kant considered a priori reasoning based on the ostensive but pure construction of mathematical concepts.

Euclid reasons as follows: given a triangle ABC , extend the base BC to D. Then construct a line through C to E such that CE is parallel to AB. Since AB is parallel to CE and AC is a transversal, angle 1 is equal to angle 1'. Likewise, since BD is a transversal, angle 2

For Kant , the axioms or principles that ground the constructions of Euclidean geometry comprise the features of space that are cognitively accessible to us immediately and uniquely, and which precede the actual practice of geometry. Kant said that space is three dimensional; two straight lines cannot enclose a space; a triangle cannot be constructed except on the condition that any two of its sides are together longer than the third.

Kant takes the procedure of describing geometrical space to be pure, or a priori, since it is performed by means of a prior pure intuition of space itself. According to Kant, our cognition of individual spatial regions is a priori since they are cognized in, or as limitations on, the essentially single and all encompassing space itself.
Of the truths of geometry e.g. in performing the geometric proof on a triangle that the sum of the angles of any triangle is 180°, it would seem that our constructed imaginary triangle is operated on in such a way as to ensure complete independence from any particular empirical content.

So, in term of geometric truths, Kant might suggest that they are necessary truths or are they contingent viz. it being possible to imagine otherwise. Kant argues that geometric truth in general relies on human intuition, and requires a synthetic addition of information from our pure intuition of space, which is a three-dimensional Euclidean space. Kant does not claim that the idea of such intuition can be reduced out to make the truth analytic.

In the Prolegomena, Kant gives an everyday example of a geometric necessary truth for humans that a left and right hand are incongruent. The notion of "hand" here need not be understood as the empirical object hand. According to Kant, we can assume that our pure intuition filter has adequately abstracted our hand-experience into something detached from its empirical component, so we are merely dealing with a three-dimensional geometric figure shaped like a hand.

By “incongruent", the geometer simply means that no matter how we move one figure around in relation to the other, we cannot get the two figures to coincide, to match up perfectly. Kant points out, there is still something true about the 3-D Euclidean case that has some kind of priority over the other cases. Synthetically, it is necessarily true that the figures are incongruent, since the choice of view point in point of fact no choice at all.

References:

Kant, I, 1783. “Prolegomena to Any Future Metaphysic: , First Part Of The Transcendental Problem: How Is Pure Mathematics Possible? Sect.10, p. 34
2Ibid. p. 35
3 Kant, I., 1787, “The Critic Of Pure Reason: SS 9 General Remarks on Transcendental Aesthetic.” Translated By J. M. D. Meiklejohn, Retrieved 2003
4 Ibid.
5 Ibid.
6 Ibid.
7 Ibid.
8Ibid.
9 Ibid.
10 Ibid.
11Ibid.
12Kant, I, 1783, “Prolegomena to Any Future Metaphysic: REMARK 1” Trans. Paul Carus.. Retrieved 2003
13Ibid.
14Ibid.
15Shabel, L., 1998, “Kant’s “Argument from Geometry”, Journal of the History of Philosophy, The Ohio State University, p.24
16Ibid. p. 28
17Ibid.p.30
18Ibid.p.30
19Ibid.p.32
20 …., 1987, “Geometry: Analytic, Synthetic A Priori, or Synthetic A Posteriori?”, Encyclopedic Dictionary of Mathematics, Vol. I., "Geometry", , The MIT Press, p. 685
21Ibid. p. 686
22Ibid. p. 689
23Ibid. p.690
24Ibid. p.691
25Ibid. p.692

6 comments:

  1. Ahmad Bahauddin
    16709251058
    PPs P.Mat C 2016

    Assalamualaikum warohmatullahi wabarokatuh.
    Kant percaya bahwa geometri Euclidean bersifat sintetis secara apriori dan benar. Namun ruang bersifat infact dan non-euclidean yang bisa dianggap bertentangan dengan paham Kant. Apakah ini berarti penemuan matematis geometri non-euclidean atau penemuan fisik geometri spasial non-euclidean menyangkal penalaran Kants?

    ReplyDelete
  2. Lihar Raudina Izzati
    16709251046
    P. Mat C 2016 PPs UNY

    Dalam artikel ini dituliskan bahwa dalam kritik Kant tentang Alasan Murni (1787) Kant menguraikan bahwa geometri didasarkan pada intuisi murni ruang. Dan, aritmatika menyelesaikan konsep nomornya dengan penambahan unit secara berturut-turut. Dan terutama mekanik murni tidak dapat mencapai konsep gerak tanpa menggunakan representasi waktu. Kant menekankan bahwa kedua representasi hanyalah intuisi. Karena jika kita menghilangkan intuisi empiris bentuk dan perubahannya (gerak) semuanya empiris, ruang dan waktu tetap ada.

    ReplyDelete
  3. Wahyu Berti Rahmantiwi
    PPs Pendidikan Matematika Kelas C 2016
    16709251045

    Menurut Kant, geometri didasarkan pada intuisi murni ruang sedangkan aritmatika menyelesaikan dengan konsep angka yang ditambahkan oleh angka berurutan dan konstan tidak pernah beda selisihnya. Oleh karena itu Kant menyimpulkan bahwa matematika murni disusun oleh kognisi sintetis a priori. Matematika murni tidak hanya mengacu pada objek lain selain indera, tetapi juga berdasarkan empiris seseorang. Geometri adalah ilmu yang menentukan sifat ruang secara sintetis, namun bersifat apriori. Prinsip geometris selalu bersifat apodeictic, yaitu bersatu dengan kesadaran akan kebutuhan mereka karena intuisi yang dihasilkan secara langsung.

    ReplyDelete
  4. Gamarina Isti Ratnasari
    Pendidikan Matematika Kelas B (Pasca)
    17709251036

    Geometri merupakan salah satu materi yang diajarkan dalam matematika. Geometri tidak terlepas dari konsep visual dan ruang. Berdasarkan hal yang pernah saya baca siswa laki-laki lebih mudah memahami konsep matematika yang berhubungan dengan geometri dari pada siswa perempuan. Hal tersebut karena daya imaginasi siswa laki-laki terhadap keruangan lebih baik, Oleh karean itu sebagai guru hendaknya kita lebih memperhatikan geometri untuk siswa perempuan agar mudah dalam mengaitka, mengkonstruksi, dan menganalisis konsep ruang matematika.

    ReplyDelete
  5. Nama: Hendrawansyah
    NIM: 17701251030
    S2 PEP 2017 Kelas B

    Assalamualaikum wr wb

    Melalui postingan ini, saya jadi teringat kisah tujuh tahun lamanya ketika menjejaki mata kuliah geometri waktu Strata satu.Membuktikan teorema atau definisi menggunakan bangunan segitiga.Menurut saya pribadi ini adalah pelajaran yang amat sulit karena membuktikannya harus sesuai dengan konsep yang ada.Sedikit mengulasnya kembali karena ada hubungannya di dalam postingan ini.
    Menurutkan dalam postingan ini bahwa matematika murni bersifat apriori yang berangkat dari dugaan yang menfokuskan diri pada pengindraan.Saya menangkap bahwa Khant mencoba meluruskan pamahaman terkait konsep geometri.Menurutnya segala sesuatu tak cukup hanya dengan mengindrai saja .Namun ada yang menjadi dalang di balik semuanya.Maaf sebelumnya jika saya salah dalam menafsirkannya.

    ReplyDelete
  6. Dimas Candra Saputra, S.Pd.
    PPs PMA 2017
    17709251005

    Assalamualaikum prof,
    Menurut I Kant, sebenar-benarnya pengetahuan ialah bersifat sintetik apriori. Demikian pula dalam pengetahuan geometri, pengetahuan tersebut ditentukan dengan sifat-sifat keruangan secara sintetik namun a priori. Sintetik berarti bahwa konsep-konsep geometri ditemukan melalui intuisi pengindraan, yaitu memerlukan data empiris berdasarkan pengalaman. Tetapi, walaupun ditemukan melalui pengalaman, konsep yang diperoleh tidak bersifat empiris, melainkan bersifat murni.

    ReplyDelete