Nov 26, 2012

Hilbert's Program 1_Documented by Marsigit



Hilbert's Program 1


Hilbert had an anti-Kantian reaction now called formalism. The program is implemented in two steps:

1) Divide all of the mathematical sciences into two broad classes: The real part (or conceptual part) of mathematics and the ideal part of mathematics. The real part included only the parts of mathematics which don't take us into the infinitary realm. It involved no ontological or epistemological questions. Logic, and number theory are part of real mathematics. The ideal part of mathematics included everything else-- all the parts of mathematics that would have been discarded without Hilbert's second motive. This includes geometry, set theory, and analysis. Hilbert had the basic idea that any branch of mathematics can be formalized (meaning it can be expressed in a formal language and can be axiomatized to give a formal system.



4 comments:

  1. Nama : Irna K.S.Blegur
    Nim : 16709251064
    kelas : PM D 2016(PPS)

    Program yang dilaksanakan Hilbert terdiri dalam dua langkah:
    1) Bagilah semua ilmu matematika menjadi dua kelas yang luas: Bagian nyata (atau bagian konseptual) matematika dan bagian ideal matematika. Bagian nyata termasuk hanya bagian dari matematika yang tidak membawa kita ke dunia infinitary. Ini melibatkan tidak ada pertanyaan ontologis atau epistemologis. Logika, dan nomor teori adalah bagian dari matematika yang nyata. Bagian yang ideal matematika termasuk segala sesuatu else-- semua bagian dari matematika yang akan telah dibuang tanpa motif kedua Hilbert. Ini termasuk geometri, teori himpunan, dan analisis. Hilbert memiliki ide dasar bahwa setiap cabang matematika dapat diformalkan (yang berarti dapat dinyatakan dalam bahasa formal dan dapat axiomatized untuk memberikan sistem formal

    ReplyDelete
  2. Sumandri
    16709251072
    S2 Pendidikan Matematika D 2016

    Program yang dilaksanakan Hilbert terdiri dari dua langkah:
    1. Bagilah semua ilmu matematika menjadi dua kelas yang luas: Bagian nyata (atau bagian konseptual) matematika dan bagian ideal matematika. Bagian nyata termasuk hanya bagian dari matematika yang tidak membawa kita ke dunia infinitary. Ini melibatkan tidak ada pertanyaan ontologis atau epistemologis. Logika, dan nomor teori adalah bagian dari matematika yang nyata. Bagian yang ideal matematika termasuk segala sesuatu bagian dari matematika yang telah dibuang tanpa motif
    2. Hal lainnya termasuk dalam geometri, teori himpunan, dan analisis. Hilbert memiliki ide dasar bahwa setiap cabang matematika dapat diformalkan (yang berarti dapat dinyatakan dalam bahasa formal dan dapat axiomatized untuk memberikan sistem formal.

    ReplyDelete
  3. Saepul Watan
    16709251057
    S2 P.Mat Kelas C 2016

    Bismilahir rahmaanir rahiim..
    Assalamualaikum wr..wb...

    Berdasarkan artikel ini saya dapat mengetahui bahwa Program dari Hilbert berhubungan ruang Matematika yang disebut dengan formalisme. Hal ini berarti bahwa semua cabang dalam ilmu matematika dapat dinyatakan dalam bahasa formal. Program Hilber mengelompokkan Matematika menjadi dua bagian yaitu matematika yang nyata dan matematika yang ideal. Logika, dan nomor teori adalah bagian dari matematika yang nyata, sedangkan geometri, teori himpunan, dan analisis adalah bagian matematika yang ideal.

    ReplyDelete
  4. Wahyu Lestari
    16709251024
    PPs P.Matematika Kelas D

    dari artikel di atas, bagilah semua ilmu matematika menjadi dua kelas luas: Bagian sebenarnya (atau bagian konseptual) matematika dan bagian ideal matematika. Bagian sebenarnya hanya mencakup bagian-bagian matematika yang tidak membawa kita ke dunia yang tidak berhinggaBagian ideal matematika mencakup segalanya - semua bagian matematika yang akan dibuang tanpa motif kedua Hilbert.

    ReplyDelete