Irene: I have a hypothesis -- just barely a hypothesis --
about "scientific" and "mathematical" language -- really,
about any unfamiliar vocabulary. Maybe it's relevant to your case.
I believe -- tentatively, subject to refutation by empirical evidence -- that when we are learning a new subject, that it is advantageous if the vocabulary we use to speak about it is not new to us.
That is to say, that the words we will be learning are ones we have have often heard before, without having learned exactly what they mean. I believe that if you are having to become familiar with a new word at the same time that you are learning about the concept it stands for, your brain gets hung up on the new word and this prevents you from assimilating the concept. (This is not put very elegantly.)
An example: I believe that if you are going to study trigonometry at, say, 13, then at about 10 or 11, you should start hearing the words "sine", "cosine" and "tangent", in relation to triangles. You need not learn what they "mean" at this age, just that they are properties of an angle, in certain circumstances.
I believe that then, when you start learning what these words actually mean, how we may use them in mathematical problems, it will be significantly easier for you.
I know of no experimental evidence for this, and have never read of any research that addresses it (although there may well be some). It's just a hypothesis, based on my own (subjective, limited, selective) experience as both a tutor, and a learner. If it's true, I would expect that there is a neurological explanation, although perhaps beyond our current ability to isolate.
I believe that this is generally how we come to understand word meanings, as children. First we hear the word used, without understanding it. Then, as we hear examples of the word being used, we gradually come to that state we call "knowing the meaning". Very seldom is a word formally defined to us the first time we hear it, and almost never is it defined in the kind of emotional context that mathematical terms are usually presented in (which, for most children, is not a pleasant one).
I know also that mathematical terms are not necessarily like other words, in terms of there being a formal, precise quality to their proper use.
I would be very interested in others' comments on this, and in particular would appreciate hearing of any references to any relevant research (which does not necessarily have to be in the area of mathematics education).
I believe -- tentatively, subject to refutation by empirical evidence -- that when we are learning a new subject, that it is advantageous if the vocabulary we use to speak about it is not new to us.
That is to say, that the words we will be learning are ones we have have often heard before, without having learned exactly what they mean. I believe that if you are having to become familiar with a new word at the same time that you are learning about the concept it stands for, your brain gets hung up on the new word and this prevents you from assimilating the concept. (This is not put very elegantly.)
An example: I believe that if you are going to study trigonometry at, say, 13, then at about 10 or 11, you should start hearing the words "sine", "cosine" and "tangent", in relation to triangles. You need not learn what they "mean" at this age, just that they are properties of an angle, in certain circumstances.
I believe that then, when you start learning what these words actually mean, how we may use them in mathematical problems, it will be significantly easier for you.
I know of no experimental evidence for this, and have never read of any research that addresses it (although there may well be some). It's just a hypothesis, based on my own (subjective, limited, selective) experience as both a tutor, and a learner. If it's true, I would expect that there is a neurological explanation, although perhaps beyond our current ability to isolate.
I believe that this is generally how we come to understand word meanings, as children. First we hear the word used, without understanding it. Then, as we hear examples of the word being used, we gradually come to that state we call "knowing the meaning". Very seldom is a word formally defined to us the first time we hear it, and almost never is it defined in the kind of emotional context that mathematical terms are usually presented in (which, for most children, is not a pleasant one).
I know also that mathematical terms are not necessarily like other words, in terms of there being a formal, precise quality to their proper use.
I would be very interested in others' comments on this, and in particular would appreciate hearing of any references to any relevant research (which does not necessarily have to be in the area of mathematics education).
@Doug: Just very small question:How
you may define the meaning of BIG, SMALL, NEAR, FAR, LOW, HIGH, WIDE, MANY,
FEW, NUMBER, PART, ...etc.
What is a number, that a man may
know it, and a man, that he may know a number?
Look... a BIG tiger is coming NEAR. We had better get FAR away. (Except for those who believe reality is socially-constructed. They can remain.)
But I am stumped as to the definition of "etc".
Look... a BIG tiger is coming NEAR. We had better get FAR away. (Except for those who believe reality is socially-constructed. They can remain.)
But I am stumped as to the definition of "etc".
And even if we all spoke Lojban, we
would still have the "gavagai" problem.
When I was about 14 I discovered, like a host of similar teenagers before and after, the obnoxious pleasures to be found in asking people to "define their terms". When they tried to do so, they simply gave me targets for the Forward Observer's favorite command: "repeat!". Eventually I tired of this and went on to the delights of demanding a refutation of solipsism, or disproof of the no-free-will argument. Every child should do this!
But when we become adults, we should put aside childish things. If we wish to establish arithmetic on an axiomatic basis, a useful exercise, we will have to leave "zero", "successor", and "number" undefined, if we are not to have an infinite regress. A set is a collection and a collection is ....
This does not mean we should not seek to define, or at least clarify, our terms! Nor is it useless to follow arguments to their remorselessly 'logical' conclusions, beginning with Locke and ending with Hume.
By all means, awaken the dogmatic slumberers! But then we should agree with Hume that, although irrefutable, his scheme makes no practical difference in our daily lives.
While we teach children the truths of mathematics, we should also -- and not only in the mathematics classroom -- be teaching them how to think.
Does 1 + 1 = 2? Yes, in number bases higher than binary, and with a certain interpretation of the Hindu-Arabic numerals, but in binary 1 + 1 = 10. And of course, numbers are abstractions. In real life, we need to learn when to apply which set of abstractions. 55/10 is 5.5, but if I want to know how many ten-passenger mini-vans to hire to transport 55 pupils, 5.5 is not an answer. And 4/10 + 5/10 is 9/10 in some circumstances, and 9/20 in others.
Ideally, we should, in a sense, be teaching our children 'philosophy'. Their thinking should be flexible enough so that the mind-boggling results of assuming that the speed of light is a constant for all observers, will not boggle their minds, nor will the yet more mind-boggling results of our investigations of the world of electrons and photons.
If you can do that, well, te salud. For the time being, I'll settle for kids who know their times tables and can solve the sort of word problems that are routine for kids in Singapore. Perhaps a bit of Korzybski, so that they are not tangled up in metaphysical knots when faced with a question like "Is 4/3 a division, or is it a fraction?" (Hint: rephrase your question without using any form of the "to be" verb.)
But just as Donald Rumsfeld noted that "You go to war with the army you have," we have to teach mathematics with the teachers we have. We cannot jump over our own heads, and we cannot expect Mrs Smith who has been teaching 4th grade for the last 25 years, to take on board the sort of conceptual apparatus that would equip children for an easy acceptance of relativistic non-deterministic physics,
Some attention to our language, and even to the symbols we use for teaching mathematics, is, in my opinion, warranted, as is the encouragement of genuine critical thinking.
I think we could do more and better than we now do, in teaching children about what we have learned so far == so slowly and painfully! -- of the world and how it works.
But this assumes that what we have learned so far is worth teaching.
When I was about 14 I discovered, like a host of similar teenagers before and after, the obnoxious pleasures to be found in asking people to "define their terms". When they tried to do so, they simply gave me targets for the Forward Observer's favorite command: "repeat!". Eventually I tired of this and went on to the delights of demanding a refutation of solipsism, or disproof of the no-free-will argument. Every child should do this!
But when we become adults, we should put aside childish things. If we wish to establish arithmetic on an axiomatic basis, a useful exercise, we will have to leave "zero", "successor", and "number" undefined, if we are not to have an infinite regress. A set is a collection and a collection is ....
This does not mean we should not seek to define, or at least clarify, our terms! Nor is it useless to follow arguments to their remorselessly 'logical' conclusions, beginning with Locke and ending with Hume.
By all means, awaken the dogmatic slumberers! But then we should agree with Hume that, although irrefutable, his scheme makes no practical difference in our daily lives.
While we teach children the truths of mathematics, we should also -- and not only in the mathematics classroom -- be teaching them how to think.
Does 1 + 1 = 2? Yes, in number bases higher than binary, and with a certain interpretation of the Hindu-Arabic numerals, but in binary 1 + 1 = 10. And of course, numbers are abstractions. In real life, we need to learn when to apply which set of abstractions. 55/10 is 5.5, but if I want to know how many ten-passenger mini-vans to hire to transport 55 pupils, 5.5 is not an answer. And 4/10 + 5/10 is 9/10 in some circumstances, and 9/20 in others.
Ideally, we should, in a sense, be teaching our children 'philosophy'. Their thinking should be flexible enough so that the mind-boggling results of assuming that the speed of light is a constant for all observers, will not boggle their minds, nor will the yet more mind-boggling results of our investigations of the world of electrons and photons.
If you can do that, well, te salud. For the time being, I'll settle for kids who know their times tables and can solve the sort of word problems that are routine for kids in Singapore. Perhaps a bit of Korzybski, so that they are not tangled up in metaphysical knots when faced with a question like "Is 4/3 a division, or is it a fraction?" (Hint: rephrase your question without using any form of the "to be" verb.)
But just as Donald Rumsfeld noted that "You go to war with the army you have," we have to teach mathematics with the teachers we have. We cannot jump over our own heads, and we cannot expect Mrs Smith who has been teaching 4th grade for the last 25 years, to take on board the sort of conceptual apparatus that would equip children for an easy acceptance of relativistic non-deterministic physics,
Some attention to our language, and even to the symbols we use for teaching mathematics, is, in my opinion, warranted, as is the encouragement of genuine critical thinking.
I think we could do more and better than we now do, in teaching children about what we have learned so far == so slowly and painfully! -- of the world and how it works.
But this assumes that what we have learned so far is worth teaching.
@Doug:
Many children know the numbers without knowing that they are “numbers”; because in my language they are called “bilangan”. They do not need definition to know the concept of Number, Big, Near, etc. You did exactly the same with the younger learner to know them.
You memorize well your age 14; but I believe you cannot memorize your age 3. Still my questions how you may be able to know the concept of Big, Near, Far, Two, ..etc at your age 3? I hope my questions lead you to go deep into the endlessly state of knowing activities.
And, I am happy that you strived to go to your childish in order to remember how to know the very basic concept of mathematics i.e. concrete mathematics. Again, that is exactly the same with what the younger learner in striving to know mathematics.
If I continue this story, I believe I will not find the term “adult”; so there is no choice for you to go to younger world if you want to introduce your mathematics. And you did the simulation very well. If you do not mind I wish to call your simulation as “developing younger mathematics intuition”. I do agree to apply your statement “Every child should do this!” to this context.
The next is how to implement or follow up your simulation to your real world in which now you are as an adult who wish to interact with younger learner?
At the realm of infinite regress, more than your stumping of definition of “etc”; I challenge you or any other scientist to define “is”?
Still in the realm of infinite regress, when you become adults there will be new younger generations. It will be irresponsible behavior when then you pu aside the childish world. As an adults you should have your responsibility not to throw away undefined “zero”, “successor” and “number”; but to make them meaningful for your younger generation.
You seemed to be the victim of your older generation by repeating to fulfill their commands. And here, I do not agree with your statement that every child should do like you.
By the way, I spy that you are still confuse with the nature of Socio-constructivist. You seemed to mean this as thinking together. However, I will not elaborate it more due there are too many related references.
I wish to say that different perspectives have their different aspect of life. While I found that to some extent you still use your adults’ criteria to judge the younger life by trying to teach mathematical Truth to them. In my perspective, mathematics for the young learner is not about Body of Truth, Science of Truth or Structure of Truth, rather they are searching the pattern, relationship; solving the problems, investigating activities and doing communications.
If the Pope of Franciscus said “Protect all people especially the pure”; I will say “Protect all people especially the younger/powerless from the adults/powerful misbehavior”. Teaching cannot totally be compared with soldiers going to war. No, no way; because there is no enemy outside there but clearly the biggest enemy is inside the adults-powerful-self ego-pure mathematicians-determined teachers.
I prefer to compare teaching with the farmer’s growing the seeds. Critical thinking can only be performed if they are free to think and free to grow.
Many children know the numbers without knowing that they are “numbers”; because in my language they are called “bilangan”. They do not need definition to know the concept of Number, Big, Near, etc. You did exactly the same with the younger learner to know them.
You memorize well your age 14; but I believe you cannot memorize your age 3. Still my questions how you may be able to know the concept of Big, Near, Far, Two, ..etc at your age 3? I hope my questions lead you to go deep into the endlessly state of knowing activities.
And, I am happy that you strived to go to your childish in order to remember how to know the very basic concept of mathematics i.e. concrete mathematics. Again, that is exactly the same with what the younger learner in striving to know mathematics.
If I continue this story, I believe I will not find the term “adult”; so there is no choice for you to go to younger world if you want to introduce your mathematics. And you did the simulation very well. If you do not mind I wish to call your simulation as “developing younger mathematics intuition”. I do agree to apply your statement “Every child should do this!” to this context.
The next is how to implement or follow up your simulation to your real world in which now you are as an adult who wish to interact with younger learner?
At the realm of infinite regress, more than your stumping of definition of “etc”; I challenge you or any other scientist to define “is”?
Still in the realm of infinite regress, when you become adults there will be new younger generations. It will be irresponsible behavior when then you pu aside the childish world. As an adults you should have your responsibility not to throw away undefined “zero”, “successor” and “number”; but to make them meaningful for your younger generation.
You seemed to be the victim of your older generation by repeating to fulfill their commands. And here, I do not agree with your statement that every child should do like you.
By the way, I spy that you are still confuse with the nature of Socio-constructivist. You seemed to mean this as thinking together. However, I will not elaborate it more due there are too many related references.
I wish to say that different perspectives have their different aspect of life. While I found that to some extent you still use your adults’ criteria to judge the younger life by trying to teach mathematical Truth to them. In my perspective, mathematics for the young learner is not about Body of Truth, Science of Truth or Structure of Truth, rather they are searching the pattern, relationship; solving the problems, investigating activities and doing communications.
If the Pope of Franciscus said “Protect all people especially the pure”; I will say “Protect all people especially the younger/powerless from the adults/powerful misbehavior”. Teaching cannot totally be compared with soldiers going to war. No, no way; because there is no enemy outside there but clearly the biggest enemy is inside the adults-powerful-self ego-pure mathematicians-determined teachers.
I prefer to compare teaching with the farmer’s growing the seeds. Critical thinking can only be performed if they are free to think and free to grow.
Agnes Teresa Panjaitan
ReplyDeleteS2 Pendidikan Matematika A 2018
18709251013
Saya mengikuti perkembangan forum ini dari yang pertama sampai kepada tulisan yang ketiga belas, hal yang menjadi penekanan dalam tulisan ini adalah matematika dan bahasa yang sebaiknya melibatkan kreativitas dari guru dan siswa serta bagaimana matematika secara kontekstual bagi young learner. Pada kesimpulan yang terakhir dari tulisan ini menurut saya adalah hal yang paling penting untuk diperhatikan, yaitu pembelajaran sebaiknya mempertimbangkan siswa sebagai seseorang yang bebas untuk berfikir dan berinisiatif dalam mengkonstruksi materi yang ada dalam pembelajaran matematika.
Yuntaman Nahari
ReplyDelete18709251021
S2 Pendidikan Matematika A 2018
Matematika dan bahasa saling melengkapi, karena untuk membangun konsep matematika siswa diperlukan bahasa yang sesuai dengan dimensinya. Siswa tidak akan mampu membangun konsep matematikanya apabila guru tidak memiliki kemampuan bahasa dalam menyampaikan materi pembelajaran. Guru harus menyesuaikan bahasa yang digunakan sesuai dengan ruang dan waktunya agar siswa mampu membangun konsep matematika dengan baik. Begitu juga dengan siswa, siswa harus memiliki kemampuan berbahasa untuk mengungkapkan konsep matematika yang telah didapatkannya.
Cahya Mar'a Saliha Sumantri
ReplyDelete18709251034
S2 Pendidikan Matematika B
Assalamualaikum wr.wb.
Matematika dan Bahasa lagi menjadi trending, seperti yang kita ketahui bahwa bahasa masih identik dengan cara pengajaran guru di kelas dengan metode ceramah. Bila siswa diikutkan dalam cara verbal ini, mereka akan kesussahan dalam menerapkannya di soal karena mereka hanya mendengar tanpa tahu simbol apa yang terdapat dalam soal tersebut. Bila siswa berkreasi dengan inovasinya sendiri dalam memecahkan masalah verbal, boleh saja tetapi guru memberikan patokan untuk pemecahan masalah tersebut agar siswa lebih terarah. Bila sudah mencoba memecahkan masalah secara verbal dicoba dengan tambahan cara menggunakan simbol matematika, dan meminta siswa untuk memodifikasi cara mereka dengan kombinasi simbol matematika. Apakah akan terjadi perubahan pendapat mengenai cara mereka memecahkan masalah tersebut.
Nani Maryani
ReplyDelete18709251008
S2 Pendidikan Matematika (A) 2018
Assalamu'alaikum Wr.Wb
Matematika dan bahasa adalah dua hal yang saling melengkapi. Banyak pendapat yang menjelaskan mengenai hubungan antara bahasa dan matematika. Bahasa merupakan alat komunikasi dalam matematika yang sangat dibutuhkan untuk membangun konsep-konsep matematika pada siswa, agar matematika dapat terkonstruk dengan baik dalam diri setiap siswa.
Wassalamu'alaikum Wr.Wb
Dini Arrum Putri
ReplyDelete18709251003
S2 P Math A 2018
Matematika dan bahasa memiliki kaitan yang sangat erat. Guru harus memiliki kreativitas dalam membahasan matematika. Siswa sekolah dasar belajar matematika dimulai dengan mengenali konsep-konsep dibantu dengan benda-benda yang konkret sehingga siswa dapat lebih mengerti. Dari semua elegi tentang mathematics and language dari pertama hingga yang 13 dapat disimpulkan bahwa dalam membahasakan matematika itu aspek yang sangat penting.
Aan Andriani
ReplyDelete18709251030
S2 Pendidikan Matematika B
Assalamualaikum wr.wb.
Dalam mengajarkan matematika tidak boleh diiringi dengan rasa egois. Jangan mengajarkan kebenaran matematika kepada yang lebih muda, biarkan mereka menemukannya. Matematika bukanlah tentang tubuh kebenaran, ilmu kebenaran atau struktur kebenaran, namun lebih kepada mencari pola, hubungan, memecahkan masalah, menyelidiki kegiatan, dan melakukan komunikasi. Seseorang bisa mengembangkan pemikirannya jika mereka bebas berpikir dan bebas untuk tumbuh. Oleh karena itu, sebagai seorang guru jangan terlalu memaksakan siswanya untuk mengikuti apa yang diinginkan guru, namun biarkan mereka mengembangkan pemikirannya sendiri dengan caranya agar mereka bisa berkembang. Disinilah tugas guru untuk dapat memfasilitasi siswanya agar tidak salah jalan.
Wassalamualaikum wr.wb.
Janu Arlinwibowo
ReplyDelete18701261012
PEP 2018
Siswa merupakan suatu komponen pendidikan yang merupakan sumber dari tujuan pendidikan. Dalam proses pendidikan seharusnya siswa mendapatkan fasilitas pendidikan yang nyaman. Kenyamanan tidak hanya diindikasikan dari kesenangan namun juga bagaimana potensi siswa dapat nampak berkembang secara maksimal. Berkembangnya potensi siswa adalah ketika dia dapat memanfaatkan ilmunya dalam keseharian dimana hal tersebut harus didukung dengan pembelajaran yang bermakna. Untuk mewujudkan ppembelajaran bermakna, siswa harus diberi kesempatan untuk mengonstruksi ilmunya sendiri.
Rindang Maaris Aadzaar
ReplyDelete18709251024
S2 Pendidikan Matematika 2018
Assalamualaikum warahmatullahi wabarakatuh
Berdasarkan hipotesis yang dipaparkan pada artikel di atas tentang penggunaan bahasa ilmiah dan metematika. Hal tersebut menurut saya berhubungan dengan adanya penanaman konsep dalam benak siswa. Siswa seharusnya memahami konsep terlebih dulu secara matang, baru kemudian siswa mulai diperkenalkan dengan bahasa ilmiah seperti tangen, cosinus, dan sebagainya. Sebenarnya menurut saya bahasa ilmiah tersebut termasuk kedalam simbol verbal dimana seharusnya hal tersbeut diperkenalkan dengan baik dan tidka diajarkan secara langsung tanpa mengetahui konsep yang sesungguhnya.
Wassalamualaikum warahmatullahi wabarakatuh
Diana Prastiwi
ReplyDelete18709251004
S2 P. Mat A 2018
Bahasa komunikasi penting dalam pembelajaran. Maka disini guru sebaiknya bisa memperkenalkan matematika dengan bahasa yang dapat mudah diterima siswa sesuai usia mereka. Diharapkan dengan ini, siswa menjadi mudah paham materi yang diajarkan guru. Bahasa adalah cara berkomunikasi yang paling efektif untuk mengenal dan memberikan pengetahuan kepada siswa, bahasa bagaikan jendela dunia.
Bayuk Nusantara Kr.J.T
ReplyDelete18701261006
PEP S3
I would like to ask a question about this article, Prof. What do you mean by "Critical thinking can only be performed if they are free to think and free to grow"? As a teacher, can we make a limitation about material? If I look at the sentence "free to think free to grow" then, there will be no limitation?
Septia Ayu Pratiwi
ReplyDelete18709251029
S2 pendidikan matematika 2018
Dalam artikel mathematics dan language 13 diatas menjelaskan tentang pengenalan bahasa atau symbol-simbol matematika. Anak mulai mengenal symbol matematika dari menghafal tanpa mengetahui konsep dari symbol tersebut. Pada awalnya anak akan merasa asing dengan bahasa matematika yang didengarnya namun pelan-pelan ia akan mulai terbiasa karena diiringi dengan pembelajaran matematika yang tersistematis.
Sintha Sih Dewanti
ReplyDelete18701261013
PPs S3 PEP UNY
Terkadang masih banyak orang yang menyamakan istilah angka, bilangan, dan nomor. Padahal secara matematika ketiga istilah tersebut mempunyai perbedaan yang mendasar. Bilangan merupakan suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Bilangan yang paling luas disebut bilangan kompleks, yang dapat dibagi menjadi bilangan imajiner dan bilangan riil. Bilangan riil mencakup bilangan rasional dan irasional, dan seterunya. Sedangkan angka merupakan suatu tanda atau lambang yang digunakan untuk melambangkan bilangan. Sebuah atau beberapa angka lebih berperan sebagai lambang tertulis atau terketik dari sebuah bilangan. Nomor biasanya menunjuk pada satu atau lebih angka yang melambangkan sebuah bilangan bulat dalam suatu barisan bilangan bulat yang berurutan.
Rosi Anista
ReplyDelete18709251040
S2 Pendidikan Matematika B
Assalamualaikum wr wb
Matematika dipandang sebagai bahasa adalah matematika mengembangkan bahasa numerik yang memungkinkan untuk melakukan pengukuran secara kuantitatif. Kita contohkan seperti ini, jika kita menggunakan bahasa verbal, maka hanya dapat mengatakan bahwa Si A lebih cantik dari Si B. Apabila kita ingin mengetahui seberapa eksaknya derajat kecantikannya maka dengan bahasa verbal tidak dapat berbuat apa-apa. Jadi, bahasa dan matematika sangat erat kaitannya.
Amalia Nur Rachman
ReplyDelete18709251042
S2 Pendidikan Matematika B UNY 2018
Setiap kata atau istilah dalam matematika pasti memiliki sebuah makna yang terkadang digunakan dalam bahasa kehidupan sehari-hari. Sebagai contoh 'right' dalam bahasa inggris pada umumnya bisa diartikan sebagai 'hak' atau juga 'kanan'. Namun, kata 'right' dalam istilah matematika artinya adalah siku-siku. Yang harus kita perhatikan adalah bukan hanya satu kata saja yang harus diperhatikan untuk memaknai kata tersebut, namun pahami pula konteksnya, agar tidak salah mengartikan .
Yoga Prasetya
ReplyDelete18709251011
S2 Pendidikan Matematika UNY 2018 A
Bahasa dan matematika memiliki hubungan yang sangat berkaitan. Bahasa sebagai alat komunikasi yang digunakan dalam setiap peristiwa yang ada di kehidupan. Matematika membutuhkan bahasa untuk menjelaskan setiap objek yang ada di dalamnya. Dalam matematika memiliki nilai berupa angka yang harus diungkapkan dan dijelaskan dengan bahasa yang baik dan benar agar mudah dipahami oleh siswa dalam proses pembelajaran. Pertanyaan dalam matematika selalu dijelaskan dengan menggunakan bahasa, bagaimana seorang siswa mengetahui angka yang besar, kecil, nomor, dan lain sebagainya. Oleh karena itu sebagai tenaga pendidik harus menguasai bahasa yang mudah di pahami oleh siswa dalam proses pembelajaran berlangsung.
Fabri Hidayatullah
ReplyDelete18709251028
S2 Pendidikan Matematika B 2018
Dalam proses belajar maupun mengenali dunianya, anak-anak kecil tidak memerlukan definisi dan pengetahuan mereka tidak diawali dengan definisi. Seiring perkembangan proses belajar, pengalaman dan interaksinya dengan lingkungan, mereka bisa membuat suatu definisi sendiri. Tidak mungkin anak kecil bisa bersepeda yang dimulai dengan definisi dan teori bersepeda, proses belajarnya akan lebih baik ketika mereka berlatih langsung melalui interaksinya dengan sepeda. Demikian halnya dalam pembelajaran matematika, mengajarkan matematika yang dimulai dengan definisi tidak akan mudah dipahami oleh siswa. Siswa akan lebih mudah memahaminya bila mereka diberikan kesempatan untuk berinteraksi dengan objek maupun dengan orang disekitarnya. Di samping itu, guru juga tidak cukup hanya berhenti pada membangun konsep, guru juga harus menciptakan pembelajaran yang bermakna dan juga membuat siswa mampu menggunakan pengetahuannya secara otomatis. Dengan demikian siswa menggunakan pengetahuannya dalam aktivitas yang lebih tinggi.
Herlingga Putuwita Nanmumpuni
ReplyDelete18709251033
S2 Pendidikan Matematika B 2018
How to implement or follow up your simulation to your real world in which now you are as an adult who wish to interact with younger learner? Segala hal di dunia ini bahkan perlu melalui yang dinamakan proses, sama halnya pembentukan konsep matematika dalam benak anak. Pada pikiran mereka segalanya harus diawali melalui contoh yang konkrit yang lama kelamaan akan diarahkan menuju contoh yang abstrak.
Nur Afni
ReplyDelete18709251027
S2 Pendidikan Matematika B 2018
Assalamualaikum warahmatullahi wabarakatuh.
Dari elegi dapat diambil untuk diperhatikan Pembelajaran matematika buka hanya sekedar mengetahui kebenaran saja atau struktur kebenaran. Tetapi untuk menemukan dan mencari pola, hubungan, pemecahan masalah, menyelidiki aktivitas, serta komunikasi. terimakasih
Anggoro Yugo Pamungkas
ReplyDelete18709251026
S2 Pend.Matematika B 2018
Assalamualaikum Warahmatullahi Wabarakatuh.
Berdasarkan artikel diatas, matematika dan bahasa saling berkaitan, hal itu karena dalam membangun konsep matematika siswa, sangat diperlukan bahasa yang sesuai dengan siswa tersebut. Apabila guru tidak memiliki kemampuan bahasa dalam menyampaikan materi pembelajaran, maka siswa tidak akan mampu membangun konsep matematikanya. Sehingga guru harus bisa menyesuaikan bahasa yang digunakan sesuai dengan ruang dan waktu skswa tersebut, agar siswa dapat membangun konsep matematika dengan mudah dan baik. Begitu pula dengan siswa, siswa harus memiliki kemampuan berbahasa yang baik agar dapat mengungkapkan konsep matematika yang belum dipahami atapun yang telah dipahami.
Umi Arismawati
ReplyDelete18709251037
S2 Pendidikan Matematika B 2018
Assalamu'alaikum, Wr. Wb.
Matematika itu adalah komunikasi. Jadi matematika itu bukan hanya tentang angka dan notasi saja, tetapi juga tentang bahasa. Untuk berkomunikasi tentunya kita juga memerlukan bahasa. Bahasa seperti apa? Bahasa dimana tempat kita tinggal, berada, dan menuntut ilmu. Yang kemudian dapat dikembangkan untuk dapat menyampaikan matematika.
Umi Arismawati
ReplyDelete18709251037
S2 Pendidikan Matematika B 2018
Assalamu'alaikum, Wr. Wb.
Bagaimana tentang perubahan bahasa dalam matematika? Apakah akan menjadi suatu kebingungan tersendiri bagi siswa jika bahasa yang sudah ia pelajari sejak lama tiba-tiba diubah begitu saja hanya karena ketidaksesuaian? Bahasa matematika secara international seharusnya sudah ditetapkan, dan jika ada beberapa pihak yang ingin merubahnya cukuplah merubah bahasa tersebut dalam bahasa mereka masing-masing.
Umi Arismawati
ReplyDelete18709251037
S2 Pendidikan Matematika B 2018
Assalamu'alaikum, Wr. Wb.
Bagaimana bahasa dalam matematika? Apakah akan menjadi suatu kebingungan tersendiri bagi siswa jika bahasa yang sudah ia pelajari sejak lama tiba-tiba diubah begitu saja hanya karena ketidaksesuaian? Bahasa matematika secara international seharusnya sudah ditetapkan, dan jika ada beberapa pihak yang ingin merubahnya cukuplah merubah bahasa tersebut dalam bahasa ibu mereka masing-masing.
Samsul Arifin/18701261007/S3 PEP
ReplyDeletePengajaran matematika sebenarnya adalah bagaimana mengubah simbol-simbol dan angka-angka menjadi suatu pemahaman yang bisa diterima oleh siswa. Membahasakan simbol dan angka adalah hal yang penting dalam pembelajan matematika. membahasakan matematika pada intinya adalah usaha untuk memberikan pemahaman secara konseptual belajar matematika kepada siswa,
Vera Yuli Erviana
ReplyDeleteNIM 19706261005
S3 Pendidikan Dasar 2019
Assalamualaikum Wr. Wb.
Matematika dan Bahasa merupakan dua hal penting yang berkaitan dalam suatu proses pembelajaran. Bahasa digunakan untuk menyampaikan konsep-konsep pada mata pelajaran matematika. Tanpa adanya Bahasa, akan sulit untuk menyampaikan konsep matematika. Dengan adanya Bahasa, berperan untuk mengkomunikasikan konsep-konsep yang ada pada Matematika. Sehingga Bahasa dan Matematika adalah dua hal yang tidak dapat dipisahkan.