Sep 7, 2009

Wajah dan Raport Pendidikan Indonesia (di tinjau dari usaha mempromosikan pendidikan yang lebih demokratis)

Oleh Marsigit

Negara Indonesia terlalu besar untuk dipikirkan secara parsial. Negara Indonesia terlalu luas untuk dipikirkan secara sektoral. Negara Indonesia terlalu kompleks untuk dipikirkan oleh hanya beberapa orang. Dan negara Indonesia terlalu agung untuk dilihat hanya dari beberapa sudut pandang saja. Pancasila adalah cita-cita luhur bangsa. Demokrasi Pancasila adalah visi kebangsaaan Indonesia, walaupun kelihatannya gaungnya kurang begitu membahana, bahkan sebagian segmen masyarakat tampak agak gamang dengannya.

Tetapi baiklah, asumsikan bahwa kita memang tidak gamang, artinya memang kita berketetapan bahwa visi kebangsaan Indonesia itu ya Demokrasi Pancasila, maka kita bisa melakukan analisis deduktif, bahwa visi demikian seyogyanya menjiwai segenap aspek berkehidupan berkebangsaan dan berkenegaraan Indonesia. Maka visi pendidikan nasional juga harus bernafaskan demokrasi Pancasila, walaupun kelihatannya hal yang demikian juga mungkin terdapat segmen masyarakan yang masih agak gamang.

Tetapi baiklah, asumsikan bahwa kita memang tidak gamang bahwa pendidikan nasional seharusnya mempunyai visi demokrasi Pencasila, maka kitapun bisa melakukan analisis deduktif yaitu bahwa setiap aspek implementasi pada bagian dan subbagian pendidikan nasional juga harus dijiwai oleh semangat Demokrasi Pancasila. Jika kita secara konsisten bisa melakukan kegiatan analisis demikian maka hasil-hasil analisis tersebut dapat digunakan untuk refleksi diri kita seperti apakah wajah, tubuh, lengan dan kaki-kaki pendidikan nasional kita?

Gambaran tentang diri wajah, tubuh, lengan dan kaki-kaki pendidikan nasional akan tampak lebih jelas lagi manakala kita melakukan analisis hal yang sama untuk kasus-kasus yang paralel diluar sistem Demokrasi Pancasila. Yang terakhir tentunya semata-mata digunakan sebagai cross-check agar analisis bersifat obyektif dan hasilnya bersifat valid. Kegiatan analisis demikian setidaknya dilandasi beberapa asumsi dasar sebagai berikut.

Suatu sistem yang sehat adalah sistem yang mempunyai:
1) obyek material dan obyek formal sekaligus,
2)struktur yang jelas dan bersifat terbuka yang menggambarkan bentuk wajah, tubuh, lengan dan kaki-kaki secara jelas pula,
3)hubungan yang jelas antara komponen dalam struktur,
4) konsisten antara hubungan yang satu dengan yang lain baik hubungan secara substantial maupun hubungan secara struktural,
5) didukung oleh pelaku-pelaku dan komponen yang sesuai baik secara hakikinya, pendekatannya maupun ditinjau dari aspek kemanfaatannya,
6)peluang bagi segenap komponen yang ada untuk saling belajar dan dipelajari,
7) bersifat kompak dan komprehensif,
8) menggambarkan perjalanan sejarah waktu lampau, sekarang dan yang akan datang,
9) serta menampung semua aspirasi dan keterlibatan subyek dan obyek beserta segala aspeknya.

Dengan berbekal visi yang ada, pendekatan analisis, dan ideal dari suatu sistem yang baik, dan referensi yang ada, marilah kita mencoba melihat dan merefleksikan bentuk tubuh pendidikan nasional kita.

1) Jika kita ingin mempromosikan pendidikan lebih demokratis maka pandangan tentang keilmuan seyogyanya mempromosikan kreativitas serta merupakan bagian dari pengembangan masyarakat pada umumnya. Sementara pendidikan nasional kita belum mencapai keadaan demikian. Pandangan keilmuan yang ada masih bersifat ego of the body of knoledge, ego of the structure of knowledge, dan ego of the structure of knowledge. Pada point ini, maka analisis saya, jika diwujudkan dalam bentuk angka, baru memberikan nilai 4 (empat) pada rentang 10.

2) Jika kita ingin mempromosikan pendidikan lebih demokratis maka pandangan tentang value haruslah menuju ke keadilan dan kemerdekaan berpikir serta mendorong pengembangan aspek-aspek humanity. Praktek pendidikan kita masih terjebak pada dikotomi baik-buruk, tetapi kita kurang terampil mengisi interval di dalamnya. Praktek pendidikan cenderung semakin bersifat pragmatis dalam konteks hirarkhi paternalistik. Hirarkhi paternalistik itu akan lebih baik jika dia bersifat idealistic hierarchy paternalistic. Untuk poin ini saya memberi angka 5 (lima)

3) Jika kita ingin mempromosikan pendidikan lebih demokratis maka harus mendorong diadakannya inovasi atau perubahan secara terus menerus di segala aspeknya semata-mata demi kesejahteraan semua warga. Sementara system pendidikan kita cenderung tersedot oleh magnet dari market oriented dalam konteks hierarkhy-hierarkhy. Akibatnya nuansa pragmatis semakin menggejala bersamaan dengan erosinya nilai-nilai idealis para pelakunya. Untuk point ini saya memberi nilai 5 (lima)

4) Jika kita ingin mempromosikan pendidikan lebih demokratis maka kita harus mendorong mendorong partisipasi subyek pendidikan. Sementara di grass-root kita menemukan bahwa ketakberdayaan subyek didik dan dominasi pendidik secara terstruktur dan bersifat masif. Untuk point ini saya memberi nilai 3 (tiga)

5) Jika kita ingin mempromosikan pendidikan lebih demokratis maka harus mendorong mengembangkan aspek budaya masyarakat dan mengfungsikan pendidikan sebagai system pelayanan terhadap kebutuhan masyarakat akan pendidikan. Kebutuhan masyarakan hendaknya diartikan secara mendalam dan seluas-luasnya, termasuk paradigma bahwa subyek didik itulah sebenar-benar yang membutuhkan pendidikan.Untuk point ini saya menilai 3 (tiga)

6) Jika kita ingin mempromosikan pendidikan lebih demokratis maka tujuan pendidikan seyogyanya meliputi usaha-usaha mengembangkan masyarakat dan kehidupan seutuhnya secara komprehensif. Implementasi seyogyanya secara komprehensif dan konsisten. Untuk ini saya menilai 7 (tujuh)

7) Jika kita ingin mempromosikan pendidikan lebih demokratis maka kita perlu mempromosikan komunikasi multi arah dan kemandirian. Untuk point ini saya menilai 5 (lima)

8) Jika kita ingin mempromosikan pendidikan lebih demokratis maka kita perlu mempromosikan lingkungan kehidupan sosial kemasyarakatan sebagai konteks praktik kependidikan. Untuk poin ini saya menilai 4 (empat).

9) Jika kita ingin mempromosikan pendidikan lebih demokratis maka kita perlu mengembangkan sistem evaluasi yang bersifat terbuka dan berbasis pada pelaku pendidikan. Evaluasi pendidikan hendaknya berdasar kepada catatan atau portfolio yang menunjukkan tidak hanya hasil tetapi juga proses. Evaluasi pendidikan juga hendaknya bersifat komprehensif dengan mengukur mencatat semua aspek kemampuan pelaku. Untuk point ini saya memberi nilai 4 (empat).

10) Jika kita ingin mempromosikan pendidikan lebih demokratis maka kita perlu mempromosikan aspek multi budaya sebagai kakayaan yang perlu dikembangkan. Otonomi daerah dan desentralisasi perlu ditempatkan dalam kedudukan yang proporsional. Untuk poin ini saya menilai 6 (enam)

Rata-rata penilaian saya terhadap sistem pendidikan kita dilihat dari segi promosi pendidikan yang bersifat demokratis adalah

(4+5+5+3+3+7+5+4+4+6)/10 = 5 (lima)

Kesimpulan:

Dengan nilai 5, maka kesimpulan saya terhadap wajah sistem pendidikan kita adalah sebagai berikut:

1. Dapat dimengerti masih banyaknya persoalan-persoalan yang perlu dipikirkan baik secara substansial maupun pada implementasinya.
2. Sistem pendidikan kita belum menggambarkan wajah dan tubuh yang konsisten bagi dipromosikannya pendidikan yang lebih demokratis. Hal ini disebabkan oleh faktor-faktor baik yang mandasar maupun oleh para pelaku kependidikannya.
3. Namun, masih terdapat harapan besar agar sistem pendidikan kita kedepan mampu memberikan nuansa pendidikan yang demokratis.

Aug 24, 2009

Epistemology of Mathematics

By Marsigit

Mathematics 1 is about the structure of immediate experience and the potentially infinite progression of sequences of such experiences; it involves the creation of truth which has an objective meaning in which its statements that cannot be interpreted as questions about events all of which will occur in a potentially infinite deterministic universe are neither true nor false in any absolute sense.

They may be useful properties 2 that are either true or false relative to a particular formal system.

Hempel C.G. (2001) thought that the truths of mathematics, in contradistinction to the hypotheses of empirical science, require neither factual evidence nor any other justification because they are self-evident.

However, the existence of mathematical conjectures 3 shows that not all mathematical truths can be self-evident and even if self-evidence were attributed only to the basic postulates of mathematics.

Hempel C.G. claims that mathematical judgments as to what may be considered as self-evident are subjective that is they may vary from person to person and certainly cannot constitute an adequate basis for decisions as to the objective validity of mathematical propositions.

While Shapiro 4 perceives that we learn perceptually that individual objects and systems of objects display a variety of patterns and we need to know more about the epistemology of the crucial step from the perspective of places-as-offices, which has no abstract commitments, to that of places-as-objects, which is thus committed.

He views that mathematical objects can be introduced by abstraction on an equivalence relation over some prior class of entities.

Shapiro 5 invokes an epistemological counterpart that, by laying down an implicit definition and convincing ourselves of its coherence, we successfully refer to the structure it defines.

References:
1 --------, 2004, “A philosophy of mathematical truth”, Mountain Math Software, Retrieved 2004
2 Ibid.
3 Hempel, C.G., 2001, “On the Nature of Mathematical Truth”, Retrieved 2004
4 Shapiro in Linnebo, Ø., 2003, “Review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology”, Retrieved 2004 < http://www.oystein.linnebo@filosofi.uio.no>
5 In Linnebo, Ø., 2003, “Review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology”, Retrieved 2004 < http://www.oystein.linnebo@filosofi.uio.no>

Aug 19, 2009

Improving Creativities and Understanding of Mathematical Concept for Junior High School Students Grade 2

Examination of Student Final Task
Name of Student: Heri Prasetyo
Departmen: Mathematics Education, Faculty of Mathematics and Science, Yogyakarta State Yogyakarta
Address: Pagotan, Arjosari, Pacitan, East Jawa
Identity : 04301244051, HP: 081911551439
Supervisor: Edy Prajitno, MPd, Endang L,MS
Examiner : Dr Marsigit MA
Day/date: Wednesday, 19th August 2009
Time: 11.00

Chapter I

Title:
Improving Creativity and Understanding of Mathematical Concept through Contextual Approach for Junior High School Students Grade 2, SMP N I Arjosari Pacitan

Backgroud:
Results from observation :
The students were still passive in teaching learning process of mathematics; the level of students curiousity is still low; the students did not brave to deliver the questions; the students were still afraid and not confident to express their ideas; the motivation to solve problems using alternative method were still low; the students only copy the teacher's method.
When the teachers order the students to solve the problems, the students confused how to solve them; the students tended to wait teacher's initiative.
Students' perception:
Most of the students felt to have difficulties to understand mathematical concepts e.g. the students could not solve the problems after getting explanation from the teacher; the students felt to easily forgot mathematics concepts.
Teacher's perception:
The students had their difficulties in learning mathematics; there were the problems how to prepare the students to get high achievements in the national final examination (leaving examination).

Identification of the research's problems:
1. Students' passiveness in learning mathematics
2. Low motivation of students in learning mathematics
3. There are difficulties how to solve problems using various methods
4. Students lack of confident in delivering the question
5. Students curiosity were still low
6. Contextual approach is perceive as one alternative to improve students' creativity and understanding of mathematical concepts.

Limitation of problems:
Research was limited at teaching learning the Cube and Cuboid at the 2 grade of Junior High School.
The aspect of creativity covers (William in Munandar, 1992, p 88): thinking smoothly, thinking flexible, thinking originality, thinking specifically, taking the risk, challenging, curiosity, and respecting.
The aspect of understanding (Sri Wardani, 2006 p 8): representing the concepts, classifying the object in term of their characteristics, determining the examples as well as non-examples, employing and selecting certain procedure, applying the concepts to solving the problems.

Problems Formulation:
How to conduct teaching learning of mathematics through contextual approach which can improve students' creativity and understanding of mathematics of Grade 2 Students of Junior High School.

The Aim of the Research:
To improve students' creativity and understanding of mathematics through contextual approach which can improve students' creativity and understanding of mathematics of Grade 2 Students of Junior High School.

The Benefit of the Research:
1. To empower the teacher in teaching learning mathematics through contextual approach.
2. To empower the students' competencies in improving their creativities and understanding the concepts of mathematics.
3. To improve students' achievement in mathematics
4. To empower the school in innovating mathematics teaching learning process.

Chapter II: Theoretical Review
Definition of mathematics; Learning concept; Teaching learning concept
Creativity; Understanding the concept of mathematics, Contextual Approach

Chapter III: Method of Research
Type of research: Collaborative Class Room Action Reearch
Setting: Venue: SMPN I Arjosari, Pacitan; Time: March-April 2009
Subyect: 36 students of Grade 2 SMPN I Arjosari; 17 male students and 19 female students
Design of the research: Kemmis and Taggart model of CAR: Planning, Action, Observation, reflection
Instruments: Researcher, Questionnaire for students' creativities, Observation Sheet, Interview Guide, Field Note, and Test
Data collection: Observation, Interview, Docummentation,Questionnaire, Test
Analyses Data: Data Reduction, Table of Data, Triangulation of Data, Conclusion.
Indicators: Improvement the average of the percentage of aspects of students' creativity from Cyclus; Improvement the average of the percentage of students' understanding of mathematics from cyclus one to others.

Chapter V: Conclusion
1. Constructing the mathematical concepts: teaching learning process was started by contextual problems and employing concrets materials.
2. Finding out the mathematical concepts: through students works sheets which were developed based on contextual problems. These students works sheets were completed by cube and cuboid models.
3. Questioning the mathematical concepts: the students delivered the questions to their mates or teacher. The teacher should actively initiated to stimulate students' mathematical thinking.
4. Learning society: the optimum number of students in the group to actively discuss is 4 students.
5. Modeling of mathematical concepts: the models could come from the students when they present their answer in front of the class. Modeling could also come from the teacher.
6. Reflecting the results of learning: teacher conducted dialog with the students about the results of learning. The teacher could also give the students problems.
7. Authentic assessment: the teacher assess the students activity, their discussions, their presentations, and the results of students works sheets.

Aug 18, 2009

Syllabus for Philosophy of Mathematics Education

Yogyakarta State University
Faculty of Mathematics and Science
Academic Year 2009/2010
By Dr Marsigit MA


Philosophy of Mathematics Education
Syllabus


Subject Lesson : Philosophy of Mathematics Education
Study Program : Mathematics Education
Lecturer : Dr. Marsigit, M.A.
Code : MMP 211
Credit Semester : 2 (Semester 6)

Standard Competency :
To have experiences in synthesizing the ontological, epistemological, and axiological aspects of mathematics and mathematics education.

Description :
The lesson of Philosophy of Mathematics Education has 2 credit semester. The aim of the lesson is to facilitate the students of mathematics education to have experiences to learn and synthesize the theses and its anti-theses of the ontological, epistemological, and axiological aspects of mathematics and mathematics education. The lesson covers the in-depth study of the nature, the method and the value of mathematics and mathematics education. The material objects the philosophy of mathematics consist of the history of mathematics, the foundation of mathematics, the concept of mathematics, the object of mathematics, the method of mathematics, the development of mathematics, the hierarchy of mathematics and the value of mathematics. The material objects of the philosophy of mathematics education consists of the ideology and the foundation of mathematics education as well as the nature, the method and the value of education, curriculum, educator, learner, aim of teaching, method of teaching, teaching facilities, teaching assessment. Teaching learning activities of this lesson consists of the expositions by the lecture, classroom question and answer, sharing ideas, experiences, students’ assignments, students’ presentation, scientific papers, and browsing as well as developing internet website. The competences of the students cover their motivations, their attitudes, their knowledge, their skills and their experiences. These competencies are identified, assessed, and measured through their teaching learning activities, their assignments, their participations, the mid semester test, the final test and portfolios.

Aug 17, 2009

Resources for Lesson Plan

Sent from my BlackBerry® smartphone from Sinyal Bagus XL, Nyambung
> Teruuusss...!Kiriman dari Prof Abdul Gafur
>
> -----Original Message-----
> From: "Teacher Tip Newsletter"
>
> Date: Sat, 15 Aug 2009 20:09:32
> To:
> Subject: Start of School Teaching Guide- Teacher Tips #475
>
>
> TeAchnology.com's- Tips for Teachers Issue #475
> =============================================================
>
> The Start School of Teaching Guide can be found here:
>
>
> http://www.teach-nology.com/newsletters/475.html
>
>
> You may need to cut and paste the above link into your web browser.
>
>
> This week's
> newsletter can be found here.

>
> -------------------------------------------------------------
>
> This week's teaching theme is a First Weeks of School Teaching Guide.
>
>
> Start of School Teaching Theme Page:
>
> http://www.teachnology.com/themes/holidays/firstweeks/
>
>
> Start of School Lesson Plans:
>
> http://www.teachnology.com/gold/lessons2.html
>
>
> Start of School Teacher Printables and Worksheets:
>
> http://www.teachnology.com/gold/worksheets3.html
>
>
> Back To School Unit:
>
> http://www.teachnology.com/themes/holidays/back/
>
>
> Start of School Lesson Series:
>
> http://www.teachnology.com/gold/new/startofschool.html
>
>
> Teacher Timesavers Set:
>
> http://www.teachnology.com/gold/new/timesavers.html
>
>
> -------------------------------------------------------------
>
> * Teachers: Ready To Go Back To School?*
>
> Brand New - 25,000+ teacher resources to make your day easy!
>
> Awesome - Worksheets, Lessons, Timesavers everything for you.
>
>
> Print it here:
>
>
> http://www.teachnology.com/gold/worksheets.html
>
> -------------------------------------------------------------
>
> View the Teacher
> Resource Center

>
> -------------------------------------------------------------
>
> "I cannot possibly explain to you how unbelievably helpful
> your web site is. Thank you from the bottom of my heart."
>
> - Mary Donald, Veteran Teacher
>
> Visit: http://www.teachnology.com/gold/worksheets.html
>
> -------------------------------------------------------------
>
> You are receiving teacher tips because you have signed up to
> receive them at AGAFURDA@YOGYA.WASANTARA.NET.ID . See:
> http://teachertipnewsletter.com
> to change your status.
>

Jul 18, 2009

Sumber Penting untuk Pembelajaran Matematika

Untuk semua guru dan calon guru matematika, berikut saya sampaikan sumber penting untuk pengembangan pembelajaran matematika bertaraf internasional. Berbagai sumber pembelajaran matematika dapat di akses: rpp, video, lesson study, dst

Silahkan klik berikut:

http://hrd.apec.org/index.php/Main_Page

Sumber tersebut diberikan oleh Prof. Akihiko Takahashi, Ph.D dari DePaul University, Chicago, Amerika Serikat.

Selamat mmemanfaatkannya.